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On the instability of a free viscous rim
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This paper is devoted to the theoretical description of the dynamics of a rim formed
by capillary forces at the edge of a free, thin liquid sheet. The rim dynamics are
described using a quasi-one-dimensional approach accounting for the inertia of the
liquid in the rim and for the liquid flow entering the rim from the sheet, surface
tension and viscous stresses. The governing equations are derived from the mass,
momentum and moment-of-momentum-balance equations of the rim. The theory
provides a basis from which to analyse the linear stability of a straight line rim
bounding a planar liquid sheet. The combined effect of the axisymmetric disturbances
of the radius of the rim cross-section as well as of the transverse disturbances of the
rim centreline is considered. The effect of the viscosity, relative film thickness and rim
deceleration are investigated. The predicted wavelength of the most unstable mode
is always very similar to the Rayleigh wavelength of the instability of an infinite
cylindrical jet. This prediction is confirmed by various experimental data found in
the literature. The maximum rate of growth of rim disturbances depends on all the
parameters of the problem; however, the most pronounced effect can be attributed
to the rim deceleration. This conclusion is confirmed by nonlinear simulations of rim
deformation.
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1. Introduction
Flow of a free, thin liquid sheet is relevant to many industrial applications

such as polymer or foam processing, cooling, coating, washing, as well as in
various hydrodynamic rheological experiments. The dynamics of free liquid sheets
is determined by the inertia, viscous stresses and surface tension. The description
of the liquid flow in the film can be significantly simplified by accounting for the
smallness of the film thickness in comparison with the typical lengths in the other two
directions. Such a simplifying approach has been used in the past to predict the shape
of a steady flow in a liquid bell (Boussinesq 1869a , b; Taylor 1959a), the instability
of free planar sheets (Taylor 1959b, c) and recently of an axisymmetric liquid sheet
(Clanet 2001). Entov (1982) developed a quasi-two-dimensional theory describing the
dynamics of thin films of viscous Newtonian liquids and polymeric solutions.

At the free edges of a free, stationary, uniform liquid film, the surface tension can
be balanced only by the inertia of the liquid. Capillary forces are responsible for the
emergence of a free rim propagating towards the liquid film with a finite velocity
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(Taylor 1959b; Culick 1960):

V =

[
2σ

ρhS

]1/2

, (1.1)

where ρ and σ are the liquid density and surface tension, respectively, hS is the
thickness of the free sheet and V is the relative steady rim velocity in the direction
normal to the rim centreline. Expression (1.1) is valid for low-viscosity liquids (Savva &
Bush 2009).

The theoretical model of Entov et al. (1986) for the stationary rim bounding a
planar sheet accounts for the flow and internal stresses in the rim and in the free
film. Clanet & Villermaux (2002) have recently applied the rim dynamic equations to
describe the stationary shape of the rim that arises when a radially expanding liquid
sheet collides with an obstacle.

Many physical phenomena can be explained by the propagation of the rim, which
include the spreading and receding of a drop impacting onto a dry partially wettable
substrate (Roisman, Rioboo & Tropea 2002; Rozhkov, Prunet-Foch & Vignes-Adler
2002; Bartolo, Josserand & Bonn 2005), dewetting of a dry substrate (Brochard-Wyart,
Di Meglio & Quéré 1987; Brochard-Wyart & De Gennes 1997), aerodynamic drop
deformation by a shock wave (Hsiang & Faeth 1992, 1995), drop binary collisions
(Ashgriz & Poo 1990; Brenn, Valkovska & Danov 2001; Roisman 2004) and the
interaction of two jets (Bush & Hasha 2004). In some cases the rim becomes unstable,
which leads to the emergence of finger-like jets that subsequently break up into
drops. The jets appear usually in the plane of the film. One of the most important
phenomena related to rim instability is the atomization of a liquid by a fan spray sheet
(Clark & Dombrowski 1972) or pressure swirl atomizers, and secondary atomization
by spray/wall or drop/substrate interaction (Yarin & Weiss 1995).

Comprehensive reviews on the topics of liquid fragmentation, breakup and
atomization can be found in Lin & Reitz (1998), Villermaux (2007), Gorokhovski &
Herrmann (2008), Eggers & Villermaux (2008) and Eggers (1997). Rim instability
is often related to the capillary instability of a free infinite cylindrical jet. Rayleigh
(1879) obtained the dispersion relation for an inviscid problem in the form

ω =

√
σ

ρa0

[
ξI′

n(ξ )

In(ξ )
(1 − n2 − ξ 2)

]1/2

, (1.2)

where ω is the growth rate of the disturbances, ξ = 2πa0/� is the dimensionless
wavenumber (� being the wavelength) and In(ξ ) is the modified Bessel function
of order n. The maximum growth rate of the axisymmetric disturbances (n= 0) is
ω∗ = 0.343

√
σ/(ρa0) at ξ = ξ∗ = 0.697.

Viscous effects are accounted for in the long-wave approximation in the work of
Weber (1931) for the axisymmetric disturbances of a jet. The dispersion relation and
the expression obtained for the wavenumber of the most unstable mode are

ω =

√
σ

ρa0

[√
2 + (9Oh2 − 2) ξ 2 − 3Ohξ

]
ξ

2
, (1.3a)

ξ∗ = [2 + 3
√

2Oh]−1/2, (1.3b)

ω∗ =

√
σ

ρa0

√
2 + 6

√
2Oh + 9Oh2 − 3Oh

4 + 6
√

2Oh
, (1.3c)

where Oh = µ/
√

ρσa0 is the Ohnesorge number.
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Figure 1. Unstable liquid sheets, jets and secondary drops generated by spray impact.

In the inviscid limit, Oh = 0, the most unstable mode predicted by the long-wave
approximation of Weber is ω∗ = 0.354

√
σ/(ρa0) at ξ = ξ∗ = 0.707, which is close to

the exact solution of Rayleigh. From the solution of Weber (1931) the eigenvector of
the system can be found easily. This solution yields the ratio u0/α0 of the amplitudes
of the longitudinal velocity and the disturbance of the rim radius. This ratio can be
expressed in the form

u0/α0 =

[
1 +

3Oh√
2

]−1/2

. (1.4)

The jet stability and the wavelength of the most unstable mode can be significantly
influenced by longitudinal stretching (Frankel & Weihs 1985; Khakhar & Ottino
1987) or by hydrodynamic forces applied from the surrounding fluid (Tomotika 1935;
Entov & Yarin 1984; Brenner, Lister & Stone 1996).

Rim dynamics and stability are influenced by the flow entering the rim from the
free sheet and by the capillary forces. These two factors often lead to rim stabilization.
Fullana & Zaleski (1999) performed numerical simulations of rim propagation
and deformation using the volume-of-fluid method. In their simulations rim-radius
disturbances do not grow significantly and also do not lead to rim breakup. In the
recent numerical study of Bagué, Zaleski & Josserand (2007) an initially stationary
rim starts to propagate towards a uniform stationary liquid film. It is accelerated by
the surface tension and then it deforms. The deformation of the rim centreline in
some cases leads to the appearance of cusps (regions at which the radius of curvature
of the rim centreline vanishes), ejection of a finger-like jet and drop formation.

The flow in finger-like jets appearing as the result of rim instability is usually
almost parallel to the plane of the free liquid sheet and is directed nearly normal to
the rim centreline. Consider, for example, the shape and the breakup of the unstable
rim bounding a liquid sheet emerging as a result of spray impacting onto a rigid
wall, as shown in figure 1. A stability analysis of a straight, infinite cylindrical jet
cannot describe the emergence of the finger-like jets and the rim breakup since the
considered disturbances to the rim are symmetrical relative to the rim centreline.
Therefore, Rayleigh–Plateau instability alone cannot be responsible for splash despite
the fact that this analysis well predicts the experimental data for the rim-breakup
length (Deegan, Brunet & Eggers 2008). We repeat that one of the conclusions of the
Rayleigh–Plateau analysis is that the fastest-growing disturbance of an infinite cylinder
is axisymmetric. However, the observed rim deformation is not always axisymmetric.
For the same reason the Richtmyer–Meshkov instability too (Krechetnikov & Homsy
2009), in our opinion, cannot be considered as the main reason for splash.
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Figure 2. Splash produced by a single-drop impact onto a smooth, rigid, wetted substrate.

The linear stability of the inviscid rim has been analysed in Roisman, Horvat &
Tropea (2006), accounting for the factors associated with the film flow. Linearized
equations of motion for a nearly straight rim are derived from the mass, momentum
and angular-momentum-balance equations. Both the axisymmetric disturbances of the
radius of the rim cross-section and the transverse disturbances of the rim centreline
are considered. The growth rate of the disturbances of rim increases significantly with
the rim acceleration towards the film and decreases with the relative film thickness.
The wavelength of the most unstable mode is very similar to the wavelengths obtained
by Rayleigh (1879) and Weber (1931) for a wide range of the parameters.

In a recent study of spray impact (Roisman et al. 2007), the effect of film stretching
was investigated. It was shown that strong film stretching can lead to the appearance
of long stable portions of the rim. Corresponding experimental evidence of their
theoretical predictions are provided in Roisman et al. (2007).

It should be noted that the reason for rim instability and the mechanisms of splash
are still rather disputed subjects. One important topic which is not considered in our
previous theory on rim transverse bending (Roisman et al. 2006, 2007) is the shape
of the rim. These studies have concentrated solely on the shape of the centreline
whose deformation could lead to cusp formation, as suggested by Yarin & Weiss
(1995). In fact, at the instant of the emergence of a finger-like jet the disturbance
of the rim centreline is frequently not clearly visible. One such example is shown in
figure 2. The jets originate from the bumps distributed along the rim and growing
in the direction of motion of the rim centreline. One possible explanation for the
bumps’ formation is with respect to the instability of the internal flow inside the rim,
leading to the deformation of the rim cross-section. In this paper, we show that this
phenomenon can be explained in the framework of the long-wave approximation of
a quasi-two-dimensional theory on rim dynamics.

The main topic of this study is the development of a theoretical model for the
evolution of a rim bounding a free viscous sheet. The theory combines a quasi-
one-dimensional approach to the dynamics of a free cylindrical jet and a quasi-two-
dimensional approach to the dynamics of a free, thin liquid sheet (Yarin 1993). In
§ 2 the governing equations for the propagation of the rim centreline, growth of the
size of the rim cross-section and the internal liquid flow in the rim are obtained from
the mass, momentum and moment-of-momentum-balance equations, accounting for
capillary forces, internal viscous stresses in the rim and in the film, as well as the
inertia of the flow in the rim and of the flow entering the rim from the liquid sheet.
In § 3 the theory is applied to the linear stability analysis of a nearly straight rim.
The results of the stability analysis are discussed in § 4. In particular, the effect of
viscosity on the maximum growth rate of the disturbances and on the corresponding
wavelength is investigated. The predicted shape of the perturbed rim is similar to the
form observed in experiments.
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Figure 3. Element dζ of a free rim. (a) Geometry of the rim, (b) definition of the coordinate
system and (c) the surface forces applied to the rim element.

2. Dynamics of a rim
2.1. Definition of the coordinate system and geometry of the rim centreline

Consider a median surface of a free sheet in parametric form as x = XS(ξ , t) and the
average velocity in the sheet as uS(ξ , t), where ξ is a vector of two parameters and t

is time. Also define a unit normal vector NS to the surface x = XS(ξ , t).
Also consider a free rim bounding a free sheet (figure 3). Here the centreline

of the rim is defined in parametric form as x = XR(ζ, t), where ζ is a parameter
associated with a material point moving with the rim. The area of the rim cross-
section S is denoted by A(ζ, t) and the thickness of the liquid film at the rim
location is hSR(ζ, t). Consider then a coordinate system {s ′, y ′, z′} with its origin at
the rim centreline and the corresponding unit vectors {τ , n, b}, where τ is the unit
tangent vector to the curve x = XR , n is the unit principal normal and b is the unit
binormal vector, as shown in figure 3(b). Denote a unit vector nS = τ × NS normal
to the rim centreline and parallel to the sheet surface. Any radius vector x can be
represented in the form x = XR + r , where r is the radius vector in the moving system
{τ , n, b}.

The length of the element dζ of the rim at the centreline is λdζ , where the rim
stretching parameter λ is defined through λ= |XR,ζ |. The unit base vectors can now
be defined in the form

τ = λ−1 XR,ζ , n = τ ,ζ |τ ,ζ |−1, b = τ × n. (2.1)

The relationship between the base vectors and the local curvature, κ , and torsion,
τ , of the centreline can be obtained from the Serret–Frenet formulae:

τ ,ζ = λκn, n,ζ = λ(−κτ + τ b), b,ζ = −λτn. (2.2)

Denoting the centre of mass of the rim volume element G and the centre of mass
of the rim cross-section by C, the position of the point G is determined as r = rG,
whereas the position of the centre of mass C of the cross-section S is r = 0 by
definition. For an element of the rim cross-section denoted by dS, an element of the
rim volume can be defined as λ(1 − κy ′) dS dζ , such that the positions of the points
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C and G are defined through

rC =

∫
S

(y ′n + z′b) dS

A
≡ 0, (2.3a)

rG =

∫
S

(y ′n + z′b) λ(1 − κy ′) dS dζ∫
S

λ(1 − κy ′) dS dζ

= − κ

A
(Ibn − Ibnb), (2.3b)

where

Ib =

∫
S

y ′2 dS, Ibn =

∫
S

y ′z′ dS, A =

∫
S

dS, (2.4)

with Ib and Ibn being the moments of inertia of the rim cross-section; Ibn vanishes for
a symmetrical rim cross-section.

The relative velocity w(r, ζ, t) in the cross-section S is associated with rim
stretching, deformation and circulation induced by the flow entering from the liquid
film. Therefore, the absolute velocity v in S can be expressed as

v = V + Ω × r + w, (2.5)

where

V (ζ, t) = XR,t , Ω = (n,t · b)τ − (τ ,t · b)n + (τ ,t · n)b (2.6)

are the velocity of the centreline and the angular velocity of the cross-section S.
The components of the angular velocity are obtained from (2.1), (2.6) and (2.2) as

Ωn = −λ−1 Vb,ζ − τ Vn, Ωb = λ−1 Vn,ζ + κVτ − τVb, (2.7)

Ωτ = [λ−1Vb,ζ ],ζ + λ−1 [λτVn],ζ + λκτVτ − λτ 2Vb. (2.8)

The values of Ωn and Ωb are the same as obtained by Entov & Yarin (1984) for a
free liquid jet.

2.2. Rim-balance equations

In order to formulate the rim-balance equations the surface determining the element
of the rim is subdivided into four regions (figure 3c). Regions 1 and 2 are the
cross-sections of the rim, region 3 is the interface between the rim and the sheet and
region 4 is the free surface of the rim. The unit vectors τ 1 and τ 2 are normal to the
cross-sections 1 and 2, whereas the unit vector nS is normal to area 3.

The mass balance is written in the Lagrangian form as follows:

(λA),t = hSRλ(V − uSR) · nS(1 − κy ′
S), (2.9)

where uSR is the average velocity of the liquid in the liquid film at the position of the
rim and y ′

S is the coordinate of the mouth of the sheet entering the rim. The forces
F1 and F2 (corresponding to the stretching of the rim) are applied to surfaces 1 and
2, and the force FS is applied to surface 3 from the film. The force FS consists of the
surface tension (of two free surfaces of the liquid film) and of the force associated
with the viscous stresses in the liquid film:

FS = (2σ nS + hSRσ S · nS)λ dζ (1 − κy ′
S), (2.10)

where σ S is the average stress tensor in the liquid film. The total force F applied to
the cross-section of the rim can be subdivided into the longitudinal, P τ , and shear,
Q, components.
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The momentum balance of the element of the rim can be easily expressed in the
system moving with the centre of mass G:

ρA(V ,t + rG,tt ) = (2σ nS + hSRσ S · nS)(1 − κy ′
S)

− ρhSR[(uSR − V ) · nS](uSR − V )(1 − κy ′
S) + λ−1 F,ζ . (2.11)

The angular momentum of the element of the rim is defined as

dL = l λ dζ, with l =

∫
S

(1 − κy ′) x × ρ v dS, (2.12)

with l being the angular momentum of the rim per unit length, in order to derive the
moment-of-momentum-balance equation.

The moment-of-momentum equation for the rim is written relative to the centre of
mass G of the element of the rim:

l ,t + λ,tλ
−1l = λ−1 MG,ζ + τ × Q

+ ρhS(1 − κy ′
S)[(uSR − V ) · nS][xGL × (uSR − V )], (2.13)

where MG is the momentum of the stresses relative to the centre of mass and
xGL = rS − rG is the coordinate of the mouth of the sheet entering the rim.

It can be shown that the rate of change of the angular momentum of the element
of rim relative to G can be expressed with the help of (2.12) as

l ,t =

∫
S

(1 − κy ′)xG × {wG,t + 2Ω × wG + Ω × (Ω × xG) + Ω ,t × xG + XG,tt}ρ dS

=

∫
S

(1 − κy ′)xG × {wG,t + 2Ω × wG}ρ dS + ρΩ × (IG · ΩG) + ρ IG · Ω ,t , (2.14)

where XG = XR + rG is the radius vector of the centre of mass of the rim element,
xG = r − rG is the radius vector with origin at point G and wG =w − rG,t is the
velocity in the rim in the coordinate system fixed at point G. The time derivatives
rG,t and wG,t are taken in the accelerating and the rotating coordinate system fixed
at G. The term IGρλ dζ is the moment-of-inertia tensor of the element of rim, which
is defined by

IG =

∫
S

(1 − κy ′)[(xG · xG)1 − xG ⊗ xG] dS, (2.15)

where 1 is the unit tensor and the symbol ⊗ denotes the tensor product. Also note
that the volume integral of xG in the element of the rim vanishes due to the definition
of the centre of mass.

2.3. Components of the forces and moments of stresses applied to the rim cross-section

Approximating the cross-section of the rim by a circle of radius a(ζ, t), it is natural to
describe the stresses and the forces associated with the flow in the rim by the stresses
which appear in a free circular cylinder of the same radius.

2.3.1. Free viscous jet of a circular cross-section

If the effect of the acceleration of the rim centreline on the shape of its cross-section
is small, the internal stresses in the rim can be estimated from quasi-two-dimensional
theory for the dynamics of a free circular liquid jet (Entov & Yarin 1984; Yarin 1993).
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For the circular jet cross-section of radius a the diagonal components of the strain
rate tensor DJ are obtained in the following form:

DJττ = −2δ
(
1 + 3

2
y ′κ

)
− [z′(τΩb − λ−1Ωn,ζ − κΩτ ) + y ′(λ−1Ωb,ζ + τΩn)], (2.16a)

DJnn = DJbb = −DJττ

2
, (2.16b)

where

δ ≡ − 1
2
(λ−1Vτ,ζ − κVn). (2.16c)

Equation (2.16b) expresses the continuity condition.
The stresses in a Newtonian jet,

σ = −p1 + 2µD, (2.17)

are then obtained from the boundary conditions at the jet surface:

σJnn = σJbb = −σ
[
H − κa−1y ′(1 + λ−2a2

,ζ )
−3/2

]
, (2.18a)

H ≡ a−1
(
1 + λ−2a2

ζ

)−1/2 −
(
1 + λ−2a2

,ζ

)−3/2
λ−1[λ−1a,ζ ],ζ , (2.18b)

where p is the pressure and H is the double mean curvature of the jet surface.

2.3.2. Stresses in a rim

In addition to the stresses associated with the jet stretching and bending, the stresses
in the rim are also influenced by the flow generated by the flux entering the rim from
the sheet. The volumetric flow rate of this flow per unit length of the rim is

W = hSR(V − uSR) · nS(1 − κy ′
S). (2.19)

This flow leads to additional growth of the rim radius a and the corresponding
stresses are shear-free at the rim surface. In this study, in order to estimate these
stresses, the linearized relative flow in the rim cross-section associated with the flow
rate W is approximated by its radial expansion:

wW =
W

2πa2
(y ′n + z′b). (2.20)

The corresponding average components of the strain rate tensor are

DWnn = DWbb =
W

2πa2
, DWττ = 0. (2.21)

Finally, the strain rate tensor in the rim is estimated by

D = DJ + DW . (2.22)

Moreover, if we consider the rim dynamics, the terms associated with the velocity
acceleration in the n and b directions are significant and cannot always be neglected.
These terms do not appear in expressions (2.18a). Since the shear stresses in the rim
and the inertial effects associated with the radial velocity relative to the rim axis are
assumed to be small and thus neglected, we expect that

∂σnn

∂y ′ = −ρV ,t · n,
∂σbb

∂z′ = −ρV ,t · b, (2.23)

which is not consistent with expressions (2.18a). In fact, the gradients of the stresses
in the rim initiated by the rim acceleration lead to the deformation of the rim
cross-section. Therefore, expression (2.18a) is not applicable in such cases.
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Note that if the Bond number,

Bo =
ρa2

σ
|V ,t − (V ,t · τ )τ |, (2.24)

is small, the deformation of the rim cross-section is also negligibly small and its shape
is well approximated by a circle, and the average pressure in the rim is not influenced
significantly. Here the term [V ,t − (V ,t · τ )τ ] expresses the projection of the material
acceleration on the plane {n, b}.

In this study, only the first-order approximations of the stresses in the rim are taken
into account, which neglects the deformation of the rim cross-section:

σnn = σbb = Σ ≡ −σH − ρV ,t · (y ′n + z′b). (2.25)

The stresses in the τ direction are determined using (2.16b), (2.17), (2.21) and (2.22)
in the following form:

σττ = −σH − ρV ,t · (y ′n + z′b) + 3µDJττ − µW

A
. (2.26)

2.3.3. Forces and moments of stresses applied to the rim cross-section

The total longitudinal force P τ applied to the jet cross-section consists of the
force component associated with the internal stress σττ and surface tension. It can be
expressed in the form

P =

∫
S

σττ dS + 2πσa
(
1 + λ−2a2

,ζ

)−1/2
. (2.27)

The expression for the force P applied to the rim of circular cross-section can then
be derived from (2.27) using (2.25) and (2.26):

P = A
[
σa−1

(
1 + λ−2a2

,ζ

)−1/2
+ σ

(
1 + λ−2a2

,ζ

)−3/2
λ−1(λ−1a,ζ ),ζ − 6µδ

]
− µW. (2.28)

The moment of stresses M applied to the rim cross-section relative to the rim
centreline is estimated from

M ≡
∫

S
σττ (r × τ ) dS =

∫
S

σττ (z
′n − y ′b) dS. (2.29)

The expression for M is obtained with the help of (2.25) and (2.26) in the following
form:

Mn = 3µI (λ−1Ωn,ζ − τΩb + κΩτ ) + ρI (V ,t · b), (2.30a)

Mb = 3µI
(
λ−1Ωb,ζ + τΩn + 3

2
κλ−1Vτ,ζ + 3

2
κ2Vn

)
− ρI (V ,t · n), (2.30b)

where I = Ib = In = πa4/4, Ibn = 0.
Finally, the moment of stresses relative to the centre of mass G is determined as

MG = M − rG × P . (2.31)

3. Linear stability analysis of an infinite, straight, viscous rim
Consider now a stationary Cartesian coordinate system {x, y, z} with base unit

vectors {ex, ey, ez} and a rim bounding a thin planar liquid sheet of thickness hS(y, t)
and velocity VS(y, t), whose median surface lies in the plane {x, y}, as shown in
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Figure 4. Sketch of the disturbed rim.

figure 4. Also consider a stretching S of the free sheet in the y direction defined
as S(y, t) = ∂VS/∂y. The stretching leads to the emergence of viscous stresses in the
sheet which then influence the dynamics of the rim. In this study, the effect of the
rim formation on the film flow is assumed to be negligibly small, which is typical
for low-viscosity fluids (Yarin 1993). The film stretching is therefore an independent
parameter in our problem.

The stress tensor in a free, thin planar liquid sheet can be found (Yarin 1993) as

σ S = 2µ[Sex ⊗ ex + 2Sey ⊗ ey], (3.1)

using the condition of vanishing of the z component of the stress tensor.

3.1. Base solution

The base solution for the undisturbed rim was obtained by Taylor (1959b) and can
also be found in Yarin (1993) and Roisman et al. (2006). Here it is written to account
for the viscous stresses emerging in the liquid film:

dY0(t)

dt
= V0(t),

dA0(t)

dt
= [VS(Y0, t) − V0(t)]hS(Y0, t), (3.2a,b)

A0(t)
dV0(t)

dt
= [VS(Y0, t) − V0(t)]

2hS(Y0, t) − 2σ

ρ
− 4µShS(Y0, t)

ρ
, (3.2c)

where Y0(t) is the undisturbed position of the rim centreline, A0(t) is the rim cross-
section area and V0 is the rim transverse velocity. It can be shown that solution (3.2)
satisfies the equations for rim dynamics derived in § 2.

3.2. Long-wave approximation of a disturbed rim

In order to analyse the stability of the rim we consider only small disturbances
of the rim centreline y = Y (x, t) and radius a(x, t). For very small disturbances
(∂Y/∂x � 1 and ∂a/∂x � 1) the system of governing equations (2.9), (2.11) and (2.12)
can be linearized and written in the coordinate system {x, y, z}. The transverse and
longitudinal components of the liquid velocity in the disturbed rim are denoted as
V (x, t) ≡ ∂Y/∂t and U (x, t), respectively. The balance equations for the mass and
momentum in the x and y directions and for the moment of momentum in the z

direction are

∂A

∂t
+

∂AU

∂x
− hS(VS − V )(1 + κa0) = 0, (3.3a)

ρA
∂U

∂t
− ∂P

∂x
+ ρhS(VS − V )U − 2σ

∂Y

∂x
= 0, (3.3b)
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ρA
∂V

∂t
− Pκ − ∂Q

∂x
+ [2σ − ρhS(VS − V )2 + 4µShS](1 + κa0) = 0, (3.3c)

ρ
∂I0Ω

∂t
− ∂M

∂x
− Q + ρhSa0(VS − V0)U = 0, (3.3d)

with the expressions for the forces and moments of stresses obtained with the help of
(2.28) and (2.30) and approximate values for the curvature and the angular velocity
with the help of (2.2) and (2.7):

P = πσa + σA0

∂2a

∂x2
+ 3µA

∂U

∂x
− µhS(VS − V )(1 + κa0), (3.4a)

M = −ρI
∂V

∂t
+ 3µI0

∂Ω

∂x
+

κI0

A0

P , (3.4b)

κ =
∂2Y

∂x2
, Ω =

∂V

∂x
. (3.4c,d )

The linearized balance equations (3.3) were obtained by Roisman et al. (2006) for
the inviscid case whereas expressions (3.4a) and (3.4b) for the force and momentum
applied to the rim cross-section include new terms associated with the viscous stresses.

Consider small disturbances of the rim centreline, of the radius of its cross-section
and of its velocity of the form

Y = Y0(t) + ε(x, t), a = a0(t) + α(x, t), U = u(x, t). (3.5)

The system of linearized equations for these small disturbances can now be obtained
easily from (3.3):

2πa0α,t + A0u,x + h(ε,t − Sε) − W0a0

(
ε,xx − α/a2

0

)
= 0, (3.6a)

−ρA0u,t + πσα,x + σA0α,xxx + 3µA0u,xx − µW0a0ε,xxx

+ µhS(ε,tx − Sε,x) − ρW0u + 2σε,x = 0, (3.6b)

−ρA0ε,tt − πρa0V̇0

(
2α − a2

0ε,xx

)
+ πσa0ε,xx + µW0ε,xx

+ Q,x − 2ρW0(ε,t − Sε) = 0, (3.6c)

2ρI0ε,xtt + ρİ 0ε,xt + πρa3
0 V̇0α,x − 3µI0ε,xxxt

− πσa3
0

4
ε,xxx + ρa0W0u − Q +

a2
0

4
µW0ε,xxx = 0, (3.6d)

where

W0 = h(VS0 − VR0), İ 0 ≡ dI0

dt
=

a2
0W0

2
, V̇0 ≡ dV0

dt
, (3.7)

with W0 being the volumetric flow rate per unit length of the liquid entering the rim.

3.3. Immediate loss of stability

Coefficients a0, A0 and I0 are functions of time and the exact solution of the system
of equations (3.6) is not trivial. Nevertheless, an expected fast exponential growth
of the rim disturbance in the case of its instability allows one to be obtained for a
standard linear stability analysis with ‘frozen’ parameters a0, A0 and I0.

Assume small rim disturbances of the form

ε = ε0 exp(ωt + iξx), α = α0 exp(ωt + iξx), (3.8a,b)

u = u0 exp(ωt + iξx), Q = q0 exp(ωt + iξx), (3.8c,d )



On the instability of a free viscous rim 217

where ω is the growth rate of the disturbances and ξ = 2π/� is the wavenumber
(� being the disturbance wavelength).

The linearized system (3.6) can now be reduced to the following form:

A · b = 0, (3.9)

where

A =

⎛
⎜⎜⎜⎝

2πa0ω + W0/a0 A0iξ A13 0

πσ iξ − σA0iξ
3 A22 A23 0

−2πρa0V̇0 0 A33 iξ

πρa3
0 V̇0iξ ρa0W0 A43 −1

⎞
⎟⎟⎟⎠, (3.10a)

b = (α0 u0 ε0, q0)
T , (3.10b)

A13 = h(ω − S) + a0W0ξ
2, (3.10c)

A22 = −ρW0 − ρA0ω − 3A0µξ 2, (3.10d)

A23 = µW0a0iξ
3 + µhiξ (ω − S) + 2σ iξ, (3.10e)

A33 = −ρA0ω
2 − 2ρW0(ω − S) −

(
πρa3

0 V̇0 + µW0 + πσa0

)
ξ 2, (3.10f)

A43 = 2ρI0ω
2iξ +

ρa2
0W0

2
ωiξ + 3I0µ ωiξ 3 +

πa3
0σ − µW0a

2
0

4
iξ 3. (3.10g)

The dispersion relation corresponding to (3.6) is obtained as

C4ω
4 + C3πω3 + C2ω

2 + C1ω + C0 = 0, (3.11)

where the coefficients C0, C1, C2, C3 and C4 are functions of the dimensionless
parameters of the problem. Obtaining expressions for these parameters is a
straightforward algebraic operation but they are rather long and as such are omitted.
All the overbarred variables and parameters starting from (3.11) are dimensionless,

with
√

ρa3
0/σ taken as the time scale and a0 as the length scale.

The main parameters of the problem are expressed through the dimensionless
variables as

ω =

√
σ

ρa3
0

ω, S =

√
σ

ρa3
0

S, V̇0 =
σ

ρa2
0

V̇ 0,

ξ = ξ/a0, hS = ha0, W0 = W 0

√
σa0

ρ
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.12)

The relation between W 0 and V̇0 can be found from the base solution (3.2):

W 0 =

√
h(2 + πV̇0 + 4hOhS). (3.13)

The dispersion relation (3.11) is an algebraic equation for ω and has four roots.
The appearance of a root with a positive real part indicates instability of the rim.

The rim acceleration dV0/dt can be calculated from (3.2c) at any instant of time.
For a given flow in the film, its value is determined by the initial conditions and by
the history of the rim propagation. The acceleration does not vanish even if at some
instant of time, the velocity gradient in the film is zero. Therefore, in our analysis,
dV0/dt is considered as an independent parameter.
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Figure 5. Dimensionless rate of growth of the rim disturbances as a function of the

wavenumber. Oh = 0.1 and V̇ 0 = −0.1. (a) S = 0 and the film thickness varies (line 1, h =0;
line 2, h = 0.1; line 3, h = 0.2; line 4, h = 0.3); (b) h = 0.1 and the film stretching varies (line 5,
S =0.5; line 6, S =0.3; line 7, S = 0.2; line 8, S = 0.1).

4. Results and discussion
4.1. Rate of growth of the linear rim disturbances

Values of the maximum positive root of (3.11) are shown in figure 5 as a function
of the wavelength ξ for various parameters. The value of ω is positive at small
values of the wavenumber and reaches a maximum at ξ ≈ 0.6 − 0.8, which is of
the same order as the wavelength of the most dangerous mode of the capillary
instability of a free cylindrical jet (Rayleigh 1879). In figure 5(a) the effect of the
film thickness is investigated. In figure 5(b) values for ω are shown at various values
of the dimensionless film stretching S. In the range of S considered, film stretching
has almost no influence on the maximum growth rate ω at wavenumbers ξ > 0.5,
whereas the growth rates of the longest waves (with ξ < 0.3) increase significantly.
This means that in the presence of film stretching, relatively stable long parts of the
rim can appear. Such long parts of the rim have been reported in Roisman et al.
(2007), where they have also been predicted theoretically for an inviscid rim.

Using the dispersion relation (3.11), it is possible to calculate the maximum growth
rate of the rim disturbances ω∗ and the corresponding wavenumber ξ ∗. The values of
ω∗ are shown in figure 6 for various parameters. In all cases, rim deceleration leads
to a significant increase of ω∗ whereas viscosity and a larger relative film thickness
stabilize the rim. The result is in agreement with the evident stabilizing role of viscosity
(Weber 1931).

The values of the dimensionless wavelength �∗ = 2π/ξ ∗ of the most unstable mode
are shown in figure 7. In all cases, the variation of �∗ is relatively small and remains
in the range 8 <� < 11 for a wide range of the parameters used in the analysis. Rim
deceleration leads to some small decrease in the value of �∗ whereas viscosity leads
to some increase of �∗.

This result is confirmed by experimental data for the relative distance between the
jets emerging from the rim due to its instability. These distances can be estimated
easily from the images of splash produced by a single-drop impact (Yarin & Weiss
1995; Cossali et al. 2004; Vander Wal, Berger & Mozes 2005; Roisman et al. 2006)
and of spray impact (Roisman et al. 2007). In most of the cases, the inter-jet distance
is approximately 10 rim radii.
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Figure 6. (Colour online) Maximum growth rate as a function of the rim acceleration at
various parameters, S = 0. (a) Effect of the film thickness at Oh = 0.1 (line 1, h = 0; line 2,
h = 0.05; line 3, h = 0.1; line 4, h =0.3) and (b) effect of the Ohnesorge number at h = 0.1
(line 5, Oh =0; line 6, Oh = 0.05; line 7, Oh = 0.15; line 8, Oh = 0.3).
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Figure 7. (Colour online) Most unstable wavelength �∗ as a function of the rim acceleration,
S = 0. (a) Effect of the dimensionless film thickness at Oh = 0.1 (line 1, h =0; line 2, h = 0.1;
line 3, h = 0.3) and (b) effect of the Ohnesorge number at h = 0.1 (line 4, Oh = 0; line 5,
Oh = 0.05; line 6, Oh = 0.15; line 7, Oh =0.3).

An interesting question related to the stability analysis is: What is the shape of
the deformed rim? To answer this question, the eigenvector of the system (3.6) is
determined, which allows us to predict the ratios of the amplitudes ε0/α0 and u0/α0.
The value of ε0/α0 is dimensionless whereas the ratio u0/α0 can be scaled using

u0

α0

= i

√
σ

ρa3
0

u0

α0

. (4.1)

The imaginary unit i appears in (4.1) to ensure real values of the ratio u0/α0.
In figure 8 the dimensionless amplitude ratios u0/α0 and ε0/α0 at the maximum

growing mode (corresponding to ω∗ and ξ∗) are shown as functions of the
dimensionless rim acceleration V̇ 0. Variation of various other parameters of the
problem leads to only minor changes in the predicted values of u0/α0 and ε0/α0. The
Ohnesorge number has a notable effect on the ratio ε0/α0.
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Figure 8. Ratios of the dimensionless amplitudes u0/α0 and ε0/α0 of the eigenvector of the
system as a function of the rim acceleration, S = 0.1 and h = 0.1. (a) The velocity u0 and the
rim deflection ε0 amplitudes normalized by the disturbances of the rim radius α0 at Oh = 0.1
and (b) ratio ε0/α0 at various Ohnesorge numbers.

4.2. Distance between finger-like jets

One of the further parameters which can be used for theory validation is the distance
between the finger-like jets appearing due to rim instability.

It is not trivial to design a validating experiment in which the flow in the sheet and
in a nearly straight rim will be perfectly controlled. In order to observe the initial
stages of the rim instability and measure its typical wavelength and growth rate, an
axisymmetric spreading of a free sheet resulting from jet or drop collision with a rigid
impactor could be considered best. Such collisions have been investigated in Clanet &
Villermaux (2002) and Rozhkov et al. (2002). In the case of the radial expansion of
the rim centreline, additional stresses appear in the rim cross-section associated with
µVnκ . They vanish in the case of the nearly straight rim considered in the present
study.

Moreover, the inter-jet distances in the experiments may not be necessarily exactly
equal to the most unstable wavelength since their values are influenced by the spectrum
of the initial natural disturbances.

On the other hand, high-speed video observations of spray impact (several sequences
of which are shown in figure 1) provide a large number of data which can then be
analysed. Some of the results of the measurements of the inter-jet distances in a water
spray have been presented in Roisman et al. (2007). The spray is generated by a full-
cone pressure-swirl atomizer. The volumetric flux is varied from 0.25 to 0.5 lmin−1.
The average drop velocity is in the range 5–11 m s−1. It is interesting to analyse such
data in more detail. In figure 9 the probability density function of the distribution of
the dimensionless inter-jet distances � = 2�/Drim is shown for rim diameters between
70 and 100 µm. Each point in the histogram is obtained by counting the values of �

from the interval �� = ±1. The histogram is then normalized to obtain the probability
density function.

Several peaks in the probability density function can be identified easily, which
indicates that the mechanism of rim breakup is rather complicated. These peaks are
clearly marked in figure 9.

In figure 10 the values of 2�/Drim corresponding to the first two peaks are shown
as a function of the diameter class of the rim. In most of the cases, the most probable
inter-jet distance is comparable with the theoretically predicted values shown in
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figure 7. The Ohnesorge number is in the range from 0.01 to 0.03. Therefore, the
effect of viscosity on the rim instability in these experiments is negligibly small. For
smaller rim diameter, the experimental values of � corresponding to the second peak
increase and approach the theoretical value of the double wavelength of the most
unstable mode, � ∼ 2�∗.

In the case of spray impact, the initial disturbances are not uniform along the
rim due to the interactions with other drops and with drop interactions with the
fluctuating liquid film created on the substrate by spray impact. Therefore, the finger-
like jets do not appear from the rim simultaneously. Some of the inter-jet distances
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thus correspond to the multiple length of the most unstable wave. Moreover, the
resolution of the camera is 20 µm, which is comparable with the smallest rim diameters
shown in figure 10. In the case of such small rim diameters, some bumps cannot be
clearly identifiable, which also leads to statistically larger inter-jet distances.

Other possible reasons for some deviation of � from its theoretically predicted
values is due to nonstationary effects, rim stretching and compression during breakup.
However, it is obvious that the predicted values are of the same order of magnitude
as the measured values of �.

4.3. Role of the moment-of-momentum equation

It is obvious that in the absence of the rim acceleration and in the absence of the
moment of momentum of the flow entering the rim, the capillary forces stabilize the
rim bending. In this case the equation for the centreline bending (3.6c) is independent
of the disturbances of the rim radius. It can be shown that the rim centreline is stable
for all the other parameters of the problem. Our stability analysis, which accounts

for the moment of momentum, shows that in the absence of acceleration, V̇ 0 � 1,
the amplitude of the rim bending does not vanish, but it is much smaller than the
amplitude of the rim radius, ε0/α0 � 1. Therefore, in this regime the bending of the
rim can be neglected and it deforms almost axisymmetrically. The mechanism of
this deformation is explained by the Rayleigh capillary instability of a free infinite
cylindrical jet. This result also indicates that the effect of the terms associated with
the moment of momentum is also rather small. Our calculations show that it is small
for various sets of problem parameters.

In this paper, much effort has been made in order to derive the moment-of-
momentum equation of the rim. This equation can be significant if the components of
the rim angular velocities, defined in (2.7), are high. The significance of this equation
for rim stability was not known a priori. At this stage we can conclude that the
moment of momentum does not determine the rim instability and its role is negligibly
small. It will thus not be considered in the nonlinear simulations of rim propagation.

4.4. Nonlinear rim deformation

Consider as an example a rim bounding a uniform stretching film with a uniform
velocity gradient S(t) in the y direction. The dimensionless nonlinear equations of
motion of the rim in the plane {x, y} can be obtained from the mass and momentum-
balance equations in the x and y directions, derived from (2.9) and (2.11) and written
in Eulerian form:

(λA),t + (λAU ),x = hS(VS − Y,t )(1 + κa), (4.2a)

ρλA(U,t + UU,x) = (λ−1P ),x + [2σY,x + 2µhSS − UhS(VS − Y,t )](1 + κa), (4.2b)

ρλA(V,t + UV,x) = [ρhS(VS − Y,t )(VS − V ) − 2σ − 4µShS](1 + κa), (4.2c)

where the liquid velocity V (x, t) in the y direction, the term λ(x, t) and the curvature
κ(x, t) are defined as

V = Y,t + UY,x, λ =
√

1 + Y 2
,x, κ = λ−3Y,xx. (4.2d)

The longitudinal and the normal velocities in the rim can be written as

Vn = λ−1Y,t , Vτ = λU + λ−1Y,xY,t . (4.3)

The stretching force P applied to the rim cross-section is defined in (2.28) with

δ = − 1
2
(λ−1Vτ,x − κVn), W = hS(VS − Y,t )(1 + κa). (4.4)
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Figure 11. (Colour online) Nonlinear rim deformation. The film is stationary: t → ∞, VS = 0,
S = 0 and hS =0.3a0. The initial rim radius is a = a0[1 + 0.2 cos(ξ ∗x)] and the initial velocity

of the rim centreline is Y,t = −
√

2σ/(ρh0), where ξ ∗ = 1/(
√

2a0). The initial shape of the rim
centreline is undisturbed. The Ohnesorge number is Oh = 0.01. The time instants are 4 ×,

6 × and 8 ×
√

ρa3
0/σ . The axis labels are dimensionless, scaled by the initial average rim

radius a0.

The velocity VS and the thickness hS of a free-stretching liquid film with a uniform
velocity gradient can be obtained easily from the mass and momentum-balance
equations:

VS =
Y

t + t0
, hS =

hS0t0

t0 + t
, S =

1

t + t0
, (4.5)

where t0 is a parameter and hS0 is the initial film thickness.
The results of numerical integration of the system (4.2) are shown in figures 11–14.

The boundary conditions are periodic at x = 0 and x =2a0π/ξ ∗, where ξ ∗ = 1/(
√

2a0)
is the wavelength of the most unstable mode of an inviscid infinite cylindrical jet. In
figures 11 and 12 the evolution of the rim position and shape at several time instants
is shown for the case of a stationary free film. Figure 11 shows the effect of the
initial disturbance of the radius of the rim cross-section whereas figure 12 shows the
influence of the initial disturbance of the rim centreline. In both cases the capillary
forces stabilize the rim bending. The rim cross-section deforms solely due to the
Rayleigh capillary instability. This result is in agreement with the CFD calculations
of Fullana & Zaleski (1999).

In figure 13 the effect of relatively weak film stretching leading to rim acceleration
is shown. This situation is relevant to the flow in the ejecta sheets produced by drop
impact onto a liquid film (Thoroddsen 2002; Josserand & Zaleski 2003). The velocity
gradient in such sheets appears due to the deceleration of the velocity of propagation
of the base of the crown (Roisman & Tropea 2002). The disturbances of the rim
centreline and of the rim radius, shown in figure 13, grow rather quickly, leading
to the appearance of bulbous regions frequently observed during the initial stage of
splashes caused by drop impact (figure 2).
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Figure 12. (Colour online) Nonlinear rim deformation. The film is stationary: t → ∞, VS = 0,
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rim centreline is Y,t = −

√
2σ/(ρh0). The initial shape of the rim centreline is Y =0.5a0 cos(ξ ∗x),

where ξ ∗ = 1/(
√

2a0). The Ohnesorge number is Oh = 0.01. The time instants are 4 ×, 6 × and

8 ×
√

ρa3
0/σ . The axis labels are dimensionless, scaled by the initial average rim radius a0.
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Figure 13. (Colour online) Nonlinear rim deformation and effect of the film stretching

leading to the rim acceleration: t0 = 10
√

ρa3
0/σ and h0 = 0.3a0. The initial rim radius is

a = a0[1+0.2 cos(ξ ∗x)] and the initial velocity of the rim centreline is Y,t = −
√

2σ/(ρh0), where

ξ ∗ = 1/(
√

2a0). The initial shape of the rim centreline is undisturbed. The Ohnesorge number is

Oh = 0.01. The time instants are 4 ×, 6 × and 8 ×
√

ρa3
0/σ . The axis labels are dimensionless,

scaled by the initial average rim radius a0.
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Figure 14. (Colour online) Nonlinear rim deformation and effect of the film stretching

leading to the rim acceleration: t0 = 2
√

ρa3
0/σ and h0 = 0.1a0. The initial rim radius is

a = a0[1 + 0.01 cos(ξ ∗x)], the initial shape of the rim centreline is Y = 0.005a0 cos(ξ ∗x)], the
initial axial velocity distribution is U = −0.01

√
σ/(ρa0) sin(ξ ∗x)] and the initial velocity of the

rim centreline is Y,t = −
√

2σ/(ρh0), where ξ ∗ = 1/(
√

2a0). The axis labels are dimensionless,

scaled by the initial average rim radius a0. (a) Oh = 0.01 and t = 9.5
√

ρa3
0/σ ; (b) Oh = 0.5 and

t =9.5
√

ρa3
0/σ ; (c) Oh = 0.5 and t = 14.5

√
ρa3

0/σ .

The rim shown in figure 14 corresponds to stronger film stretching than in the case
of figure 13. The initial disturbances of the rim radius are relatively small, 0.01a0,
while the initial disturbances of the rim centreline and of the axial velocity are in
the range obtained from the linear stability analysis (figure 8). The case shown in
figure 14(b) corresponds to the same problem parameters as in figure 14(a) except for
a much higher Ohnesorge number, Oh = 0.5. Viscosity leads to the decreasing of the
rate of growth of instability but cannot prevent it, as shown in figure 14(c) for longer
time.

4.5. When the circular rim does not appear

The conditions at the free edge of a free liquid sheet do not always lead to the
formation of the rim of nearly circular cross-section, considered in this paper.
The deformation of the rim by the viscous stresses becomes significant if they
are comparable with the capillary pressure. The ratio of the viscous to the capillary
stresses is described by the Ohnesorge number. Therefore, the analysis presented in
this paper is valid only for the cases when Oh � 1 (Savva & Bush 2009).

Moreover, a rim is not formed if the viscous stresses in the film are balanced by
the surface tension. The normal stress component in the free film in the planar case
considered in this study is σSyy = 4µS (see (3.1)). The critical-velocity gradient in
the sheet at which a rim will not be formed can be easily obtained from the force
balance σSyyh + 2σ =0. This critical-velocity gradient can thus be estimated from
S∗ = −σ/(µh).

Several examples of film flow not followed by rim formation can be found in
Debrégeas, Martin & Brochard-Wyart (1995) and Roth et al. (2005). These studies
are devoted to the investigation of hole growth in thin, very viscous free films. The
Ohnesorge number in these studies is of the order of Oh ∼ 103, far outside the range of
validity of the present theory. The rate of hole growth in Debrégeas et al. (1995) and
Roth et al. (2005) is estimated using an energy balance. This solution can, however,
also be obtained considering force balance at the hole surface. The axisymmetric
creeping flow in the viscous film is v = (ṘR/r)er , where R is the radius of the hole,
r is the radial coordinate in the film plane and er is the unit vector in the radial
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direction. The stress tensor in this flow field is

σrr = −p − 2µ
ṘR

r2
, σφφ = −p + 2µ

ṘR

r2
, σzz = −p, (4.6)

where p is the pressure in the film.
Since the axial stress at the film surface vanishes (thus, p = 0), the expression for

radial stress at the hole surface r = R can be obtained in the form σrr = −2µṘ/R. The
force balance at the hole surface (σrrh + 2σ =0) immediately yields the differential
equation for the hole radius:

−µ
Ṙh

R
+ σ = 0. (4.7)

The solution of this equation is R = R0 exp[σ t/(µh)], where R0 is the initial
hole radius. Such exponential film growth has been observed in the experiments
of Debrégeas et al. (1995) and Roth et al. (2005). As we see, flows at very high
Ohnesorge numbers can be modelled without description of the rim propagation.
Our theory of rim dynamics is therefore not applicable to such flows.

5. Conclusions
The governing equations for the evolution of a rim emerging at the edges of a

thin viscous liquid sheet are derived from the mass, momentum and moment-of-
momentum-balance equations. The resulting generalized theory accounts for inertial
effects, capillary forces and viscous stresses in the rim and in the sheet.

The theory is used to investigate the stability of a straight viscous rim. The small
axisymmetric disturbances of the rim radius, the antisymmetric disturbances of the
rim centreline in the plane of the sheet and the small disturbances of the axial
velocity of the liquid are all considered. The corresponding dispersion relation is
obtained and solved for various parameters of the problem: the Ohnesorge number,
the dimensionless rim acceleration, the relative film thickness and the dimensionless
film stretching. The predicted wavelength of the most unstable mode is found to
be very similar to the corresponding length obtained for a free infinite circular jet
(Rayleigh 1879; Weber 1931) for a wide range of parameters. This length increases
only slightly at higher Ohnesorge number.

It is shown that rim acceleration is one of the most significant influencing
factors on the growth rate of the rim bending disturbances. Nonlinear numerical
calculations demonstrate that the rim disturbances can lead to the formation of
bulbous regions along the rim, which potentially lead to the generation of the finger-
like jets frequently observed in experiments. The rim bounding a stationary uniform
liquid film propagates with a constant velocity. The rim centreline in this case is stable.

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) through
grant no. 52100658 in the framework of Collaborative Research Centre SFB 568
(TP A1).
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Boussinesq, J. 1869b Théories des expériences de Savart, sur la forme que prend une veine liquide
après s’être choquée contre un plan circulaire (suite). C. R. Acad. Sci. Paris 69, 128–131.

Brenn, G., Valkovska, D. & Danov, K. D. 2001 The formation of satellite droplets by unstable
binary drop collisions. Phys. Fluids 13, 2463.

Brenner, M. P., Lister, J. R. & Stone, H. A. 1996 Pinching threads, singularities and the number
0.0304. . . . Phys. Fluids 8, 2827–2836.

Brochard-Wyart, F. & De Gennes, P.-G. 1997 Shocks in an inertial dewetting process. C. R. Acad.
Sci. Paris IIb 324, 257–260.
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